
The boundary temperatures and the input data for the solution of the inverse problem 
were the temperatures obtained from the solution of the forward heat-conduction problem for 
boundary conditions of the second kind and a given thermal conductivity coefficient %(T) = 
0.5 + 2 T 2. The remaining input data were chosen as follows: q, = i, q2 = 0, C(T) = i, 
b = i, d = 0.5, and z m = i. 

In the spline approximation of the required function %(T) we made three divisions of 
the temperature interval [Tmin, Tmax]. The calculations wdre carried out on the difference 
net n x • n T = 20 • 20. For the 25 iterations we needed about 5 min of the processor time of 
the computer BESM-6. In this example, the problem was solved using exact data. The start- 
ing approximation for the heat-conduction coefficient was taken as a constant, and equal to 
%o = 0.75. The obtained results demonstrate the sufficiently high efficiency of the sug- 
gested algorithm. 

NOTATION 

T, temperature; C(T), volume heat capacity; %(T), thermal conductivity coefficient; x, 
d, and X, coordinates; T, time; b, right-hand boundary along x; ~m, duration of the process; 
fi(T), input temperatures; ~(x, r), temperature increment; %k, k = I, 0,..., m + i, parame- 
ters in the spline approximation of the function %(T); B(T), B spline; a and 8, parameters 
of the conjugate gradients method; J', gradient of the total functional; ~(x, T), conjugate 
variable; ~2, integrated error of the input data; and p, number of iterations. 

LITERATURE CITED 

i. O.M. Alifanov, Identification of Heat-Exchange Processes on Aircraft [in Russian], Mash- 
inostroenie, Moscow (1979). 

2. S.B. Stechkin and Yu. N. Subbotin, Splines in the Numerical Mathematics [in Russian], 
Nauka, Moscow (1976). 

3. E. Polak, Numerical Optimization Methods: A Unified Approach [Russian translation], 
Mir, Moscow (1974). 

4. O.M. Alifanov and V. V. Mikhailov, Inzh.-Fiz. Zh., 35, No. 6, 1123-1129 (1978). 
5. E.A. Artyukhin, Inzh.-Fiz. Zh., 29, No. i, 87-90 (1975). 
6. A.A. Samarskii, Theory of Difference Schemes [in Russian], Nauka, Moscow (1977). 

CONDUCTIVITY OF MULTICOMPONENT HETEROGENEOUS SYSTEMS 

G. N. Dul'nev, B. L. Muratova, and V. V. Novikov UDC 536.2 

A method is proposed for calculating conductivity of a multicomponent hetero- 
geneous system, taking account of its structure. 

The conductivity A of a heterogeneous system is the coefficient in the linear relation 
between the average flux <]> and the average value of the gradient <V~> producing it" 

<1> = A<w> w> i TfTfo dV 

v 

(i) 

For local regions occupied by the i-th component the following relations are valid: 

= d v i o. (2) 

Methods o f  c a l c u l a t i n g  the  c o n d u c t i v i t y  o f  two-component  h e t e r o g e n e o u s  sy s t ems  as  a f u n c t i o n  
o f  the  c o n d u c t i v i t i e s  o f  the  components  A i and t h e i r  volume c o n c e n t r a t i o n s  have been  d e v e l -  
oped in  a d e q u a t e  d e t a i l  [1 ,  2 ] .  
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Several formulas are available in the literature for calculating A of multicomponent 
heterogeneous systems. However, analysis showed that all these have faults which prevent 
their use in calculating the conductivity of these systems with a different structure over 
a wide range of variation of parameters. Let us discuss the most widely used formulas for 
A. 

A formula for Abased on the"effective medium" model has been derived [3-6] for the effec- 
tive conductivity of statistical mixtures 

J~-" A i - - A  m i=O. (3) 
.&d Ai + 2A 
i= i 

We note the fundamental flaws of the "effective medium" model: according to (I), for 
AI/A i = 0 and ml > 0.7, we obtain A < 0, which is physically meaningless; for AI/A i < 10 -2 
there is a poor agreement with experimental data [7, 8]; Eq. (3) is valid only for mixtures 
of isometric particles, and is an equation of the n-th degree for A. 

For a mixture of n components with conductivities which are not too different from one 
another, a relation for A has been derived in the form [9] 

A l / a  _ 2m,A~/a ,  

which is insensitive to the structure of the mixture. 

The Lichtenecker formula [i0] derived by the "construction" method is sometimes used to 
calculate A of an n-component mixture: 

m l  m2 ma Amn A=A~ A2 Aa .. .  ~ . 

Analysis of Lichtenecker's paper [i, Ii] showed that he did not take account of the ef- 
fect of the structure of the heterogeneous system on the effective conductivity. In addi- 
tion, if the conductivity of one of the components is zero, the conductivity of the whole 
system A = 0, which is not true for all structures. 

Using the idea of the "construction" method, Novikov [12] proposed the following formu- 
la for calculating A: 

A k=A~m,+  ~ A~m~, A~>A,, k = ( l §  -i, 
i = 2  

which also is insensitive to the structure of the mixture. 

It was proposed in [i] to determine the conductivity of multicomponent heterogeneous 
systems by a method which differs from all the preceding proposals in taking account of the 
structure of a heterogeneous system. The essence of this calculation consists in a step- 
by-step reduction of a multicomponent system to a two-component system. However, it turned 
out that the final result of the calculation, i.e., the value of A, depended on the sequence 
in which the reduction to a two-component medium was performed. This raised doubts about 
the possibility of using this method over a wide range of variation of parameters. 

In 1976 Yu. P. Zarichnyak proposed to calculate the conductivity of a two-component het- 
erogeneous structure with a random distribution of components by using the familiar formula 
for flat tissue structures with an ordered distribution of components [i] 

A = &m~ + 4m~m2 A~A~ ~- &m~. 
At + A~ 

This formula was generalized to a heterogeneous system with n components: 

(4) 

n n 

A = Z A,m~ + 4 Z mira' A~A, 
i~ i=~ A i + Aj (5) 
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The following assumptions were made in deriving (5): the particles are modeled by cubes 
with the cubes so disposed that planes passing through the edges of a cube do not intersect 
other cubes; the heterogeneous system consists of two layers; vertical planes passing 
through the edges of a cube are adiabatic, i.e., the spatial distribution of the flux is 
modeled by one-dimensional flow. 

Justifying the use of Eq. (5) to calculate the conductivity of a real three-dimensional 
heterogeneous system consisting of a large number of layers and having a different structure 
requires special investigations. 

Thus, at the present time there is no sufficiently all-purpose procedure for calculat- 
ing the effective conductivity of multicomponent heterogeneous systems which takes account 
of the structure of the system. 

We describe a method for calculating the conductivity of multicomponent systems which 
takes account of their structure. 

Without loss of generality, we consider first a two-component system with a flux 
through the i-th component. Then, according to (i), we have for the average flux <j> 

< ] > = ~-- ~dV,= --~ idV~ + ]~dV2 �9 (6) 

V Vt V~ 

Substituting the value of ~ from (2) into (6): 

</> - Aiv~tdVi + 1~2Vq~ = ( - -  Atmi ( V~t > + Azm., < V~Oz > ), 
V . 

vt  vz 

(7) 

< A% > = ~ .  Vq~idVi, rn~ -- VdV. (8) 

Vi 

I t  fo l lows from (1) and (8) tha t  

<Vq o> = m l < v ~ l > + m . , < V % > .  (9) 

Tak ing  a c c o u n t  o f  ( 1 ) ,  we w r i t e  Eqs .  (7) and (9) i n  t h e  form 

A = Ajm~XF, -1- A2m~2, (10) 

miXFl + m:lF2 = 1, ~ i  ----- < VeP~ > / ( vq 3 > �9 i----- 1, 2. (11) 

The two equations (i0) and (Ii) contain three unknowns A, ~i, and ~2, and therefore further 
information is necessary, for example, on the structure of the heterogeneous system under 
study. It is easy to generalize Eq. (i0) for an n-component system: 

A = ~ A i m i V l i ,  ~ami tFi=l .  (12) 
i = l  i=1 

The quantity ~i depends on the structure of the system and the conductivities of the 
components, and its determination is the basic problem in the analytic determination of the 
effective conductivity of heterogeneous systems. The quantities ~i are found by construct- 
ing models of two-component systems having various structures. Therefore, we try to reduce 
the problem of determining ~i for a multicomponent system to the problem of finding ~i for 
a two-component system -- a problem which has already been solved. 

We single out the i-th component in an n-component system. It will be surrounded by a 
medium with an effective conductivity <An-i>, which depends on the conductivities of the 
remaining n- i components and their relative positions. 

At this time we do not discuss the method of determining <An-i>. We select the con- 
ductivity of the i-th component as a basis, denote the conductivity of the whole system by 
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Ai' , and rewrite Eq. (12) in the form 

A~ =AimiW i @ < An-i } (1 - -  * m~) ~n-i,  (13) 

~n-i = < Vgn-i ) / < V9 }, (14) miW i + (1 --mi) ~r~ = 1, * 

where <V~%_i> i s  t he  a v e r a g e  p o t e n t i a l  g r a d i e n t  i n  t h e  r e g i o n  o c c u p i e d  by the  (n -- i )  com- 
p o n e n t s .  

Taking a c c o u n t  o f  (14) ,  we can r e w r i t e  Eq. (13) i n  t h e  form 

AI = < An-~ > + (A~- < An-i > )mi~ (15) 

�9 from the first of Eqs (14) into (13), we obtain Substituting ~n-i 

nziWi= A~--<An_i> (16) 
Ai--< A~-i> 

Equation (12) for the conductivity of multicomponent systems now takes the form 

A =  ~ A ~  A~--<A~_~> (17) 
~'~i=i A~ -- < A~_~ > 

We now discuss briefly the determination of the effective conductivity <A~-i> of the 
system which surrounds the i-th component. 

Let us consider, e.g., a three-component system. We single out the i-th component (i = 
i, 2, 3). The system surrounding the i-th component is a two-component system. We deter- 
mine <A~-i> by using the formulas corresponding to the structure of the given two-compo- 
nent system, after renormalizing the volume concentrations of the n -- 1 components to unity. 
If it is difficult to establish the structure of the two-component system, the simplest as- 
sumption is made that it is a layered system with the components arranged parallel to the 
heat flux. We find in succession the three values <A3-I>, <A3-2>, <A3-3> , then the three 
values A~, A~,A~ , and then from Eq. (17) the value of A. 

This method of calculating the effective conductivity of multicomponent systems can be 
called self-consistent, since it leads to agreement of the distribution of the potential 
gradient in each component with all the remaining components for an approximate calculation 
of the effective conductivity Ai'. 

Thus, the effective thermal conductivity of multicomponent systems is calculated in 
three stages. In the first stage the thermal conductivity of the medium surrounding the i- 
th component is computed by using the formulas describing heat transfer in a layered medium 
with components parallel to the heat flux: 

where the mj' 

< An--i > = 2 AimS, 
]=1 
]#i 

are the volume concentrations of the components renormalized to unity: 

(18) 

n 
m ; = m , / ~ _ m n ,  ] = 1 ,  2, . . ,  i - - l , i + l  . . . . .  n. (19) 

k=l 
A~f 

In the second stage we find the thermal conductivity A i' of the two-component system consist- 
ing of the i-th component with a thermal conductivity A i and a concentration m i and the sec- 
ond component with the thermal conductivity <An-i> and the volume concentration 1 -- m i. At 
this stage it is necessary to take account of the structure of the mixture, viz.: how com- 
ponent i is oriented relative to the remaining "effective" medium. In the third stage the 
effective thermal conductivity of the whole system is determined by Eq. (17). 

As an example, let us consider the calculation of the thermal conductivity of a three- 
component system in which the first component has a thermal conductivity A: = 1 and a volume 
concentration ml = 0.6; the second has A2 = i0 and m2 = 0.i; the third has As = i000 and 
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Fig. i. Parameter c as a function 
of volume concentration. 

TABLE i. Thermal Conductivity of Three-Component System with 
Interpenetrating Components 

t'n 1 r/2 a 
2 

Model 
I 5 1 3 4 

1 2 3 4 5 6 [ 7 

0 
0,1 
0,2 
0,3 
0,4 
0,5 
0,6 
0,7 
0,8 
0,9 

670 
507,8 
410,4 
325,3 
250,3 
195,3 
140,3 
85,4 
40,3 

1,4 

0,9 
0,8 
0,7 
0,6 
0,5 
0,4 
0,3 
0,2 
0,1 
0 

670 
515,5 
411,3 
326,8 
254,8 
191,9 
127,4 
86,1 
41,4 

1,4 

670 
501,4 
401,9 
335,2 
252,3 
187,4 
132.4 
82,2 
38,7 

1,4 

670 
516,9 
417,3 
335,4 
260,4 
195,3 
140,5 
89,4 
40,9 

1,4 

670 
500,4 
400,0 
333,4 
250,0 
188,1 
130,0 
81,6 
36,9 
1,4 

m3 = 0.3. The first and second components are distributed in the third: the first in the 
form of isolated disseminations, and the second in the form of filaments. 

In the first stage we Use Eq. (18) to determine <A~-i> , where i = i, 2, 3. To do 
this we renormalize the concentrations of the components according to Eq. (19): 

m~ = mi/(mt + m2) = 0,6/(0.6 + 0.1) = 0,857, 

m~ = mJ(m2 + ms) = 0.1/(0.1 + 0.3) = 0.250, 

m~ = mJ(ma + mt) = 0,3/(0.3 + 0.6) = 0.333. 

Then 

< Af_~ > ---- A2m~ = A3 (1 - -  m~) ---- 10 .0 ,25 -}- 1000 (1 - -  0.25) = 752.5, 

( A3-2 ) ---- a3m~ + A, (1 - -  m~) = 1000.0 .333 + 1 (1 - -  0.333) = 333.7, 

< A3_3 > = Aim~ q- A~(1 - - m ~ )  = 1 .0 ,857 + 10(I  - - 0 . 8 5 7 )  = 2.3. 

In the second stage we find Ai' , since the first component is uniformly distributed in the 
"effective" medium consisting of the second and third components in the form of closed dis- 
seminations; we use the formula for calculating the thermal conductivity for closed dissemi- 
nations [i]: 

A~ = (Aa_ l  > 1 - - - (  At 61 l - - m 1  
[ �9 - -  

A~-I > 3 

The structure which forms the second component and the surrounding medium can be described 
by a model with interpenetrating components [i]. The thermal conductivity of such a struc- 
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TABLE 2. Thermal Conductivity of Three-Component Mixtures of 

Various Structures 

r/z 3 
2 

Model 

1 3 4 5 

1 2 3 [ 4 5 6 [ 7 I 1 

801,0 
701,2 
601,3 
501,4 
401,5 
301,6 
201,7 
I01,8 

0,1 
0,2 
0,3 
0,4 
0,5 
0,6 
0,7 
0,8 

31,6 
19,2 
14,7 
12,4 
11,0 
9,9 
8,7 
6,8 

0,8 
0,7 
0,6 
0,5 
0,4 
0,3 
0,2 
0,1 

516,9 
417,3 
335,4 
260,4 
195,3 
140,5 
89,4 
40,9 

729,4 
610,9 
502,2 
402,2 
310,0 
224,5 
145,1 
71,3 

69,9 
35,4 
22,4 

16,1 
12,2 
9,6 
7,2 
4,9 

ture is given by the formula 

A~ --  < A3-2  > [c ~ + ( 1 - -  c)2~ + 2~c (1 - - c ) / ( ~ c  + 1 - -  c ) ] ,  

where the parameter c is found from the graph of Fig. 1 which was taken from [i]: c = 0.804, 
= A2/<A3_= > =0.03. Then 

A~ =333.7[0.804z+(1 0 , 8 0 4 ) z . 0 , 0 3 + 2 . 0 . 0 3 . 0 , 8 0 4  (1--0.804)/(0.03.0.804 + 1 - - 0 . 8 0 4 ) l -  230.4. 

The third component with the surrounding medium also forms a structure with interpenetrating 

components, and therefore c3 = 0.637, ~3 = 1000/2.3 = 434.8, 

A~=2.3 [0.637~+(1--0.637)z.434,8+2 �9 434,8.0,637(1~--0,637)/(434,8 �9 0,637 -}- 1 - -  0,637)] = 134.47 

From Eq. (17) the effective thermal conductivity of the whole system is 

A ==l 232.3--752~5 + 10 230~4--333~? ~-1000 134,4__--2,3_137.0. 
1 - -752 .5  10--333.7  1000--2.3 

Using this method we calculated the thermal and electrical conductivities of 64 dif- 
ferent multicomponent mixtures. The distribution of the differences between the experi- 
mental and calculated values obeyed the normal distribution law with a mean-square devia- 
tion S = 5%. 

We performed special investigations to justify the choice of the layered-structure 
model to determine the thermal conductivity of the "effective" medium surrounding an ele- 
ment. The medium was modeled by the following structures: I) layered with layers parallel 
to the heat flux; 2) layered with layers perpendicular to the heat flux; 3) with interpene- 
trating components; 4) with isolated disseminations having a thermal conductivity lower than 
that of the surrounding medium; 5) with isolated disseminations having a thermal conductiv- 
ity higher than that of the surrounding medium. In the second stage the two-component struc- 
ture was modeled by a structure with interpenetrating components. Table 1 lists the calcu- 
lated values of the thermal conductivity of a three-component system with the following val- 
ues of the thermal conductivity of the components: A] = i, A2 = I0, A~ = i000; the volume 
concentration of the second component m2 = 0.i, and ml and m3 are varied from 0 to 1. 

As can be seen from Table i, the calculated values of A found by using models 1-5 do 
not differ from one another by more than 10%. From this follow recommendations on the choice 
of model for calculating thermal conductivities in the first stage. Since the calculated 
results are practically independent of the model type, the simplest structure is chosen, 
with n components distributed parallel to the heat flux. In the second stage of the calcu- 
lation the effect of the structure increases sharply. As an example we recalculate the ther- 
mal conductivity of the same three-component mixture, but instead of modeling the system by 
a structure with interpenetrating components as we did in the preceding case, we now model 
it with layered structures and structures with isolated disseminations. Table 2 lists the 
values of the conductivity of the three-component mixture, where each row corresponds to 
some combination of volume concentrations, and each column to a specific structure. Thus, 
column3 corresponds to a layered structure with layers arranged parallel to the direction 
of the heat flux (in the second stage of the calculation). In the first stage of the calcu- 
lation a layered structure was taken with layers parallel to the heat flux. Column 4 corre- 
sponds to a layered structure with layers perpendicular to the heat flux, column 5 to a 
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structure with interpenetrating components, 6 to a structure with isolated disseminations 
having a thermal conductivity lower than that of the surrounding medium, and 7 to a structure 
with isolated disseminations having a thermal conductivity higher than that of the matrix. 

Table 2 shows that the values of the thermal conductivity of a mixture calculated with 
various models may differ by as much as a factor of 40 (e.g., the row with volume concentra- 
tions m~ = 0.5, m2 = 0.i, and m3 = 0.4, where A(1) = 401.5, and A(=) = ii.0). 

Thus, to increase the accuracy of the calculation it is necessary to know the structure 
of the mixture, and to take account of it in the second stage of the calculation. 

NOTATION 

A, conductivity of heterogeneous system; </> , average heat flux; <v~> , average 
temperature gradient; V, volume of body; Ai, conductivity of i-th component; mi, volume con- 

__r 

centration of i-th component; Ji, flux in i-th component; V% , temperature gradient in i- 
th component; ~i, ratio of i-th gradient to average; Ai' , conductivity of system if i-th com- 
ponent is taken as basis; <A.-~> , conductivity of n -- i components; c, geometric parameter 
of interpenetrating structure. 
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